Towards High Generalization Performance on Electrocardiogram Classification
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Abstract

Recently, many electrocardiogram (ECG) classification
algorithms using deep learning have been proposed. The
characteristics of ECG vary from dataset to dataset for
various reasons (i.e., hospital, race, etc.). Therefore, it
is important for a model to have high generalization per-
formance consistently over all datasets. In this paper, as
part of the PhysioNet / Computing in Cardiology Chal-
lenge 2021, we present a model developed to classify car-
diac abnormalities from 12 lead and reduced-lead ECGs.
In particular, to upgrade our previous model for improv-
ing generalization performance, we newly adopt constant-
weighted cross-entropy loss, additional features, Mixup
augmentation, and squeeze/excitation block, OneCycle
learning rate scheduler, which are selected via evaluation
of generalization performance using leave-one-dataset-
out cross-validation setting. With the present model, our
DSAIL_SNU team has received challenge scores of 0.55,
0.58, 0.58, 0.57 and 0.57 (ranked 2nd, Ist, 1st, 2nd, 2nd
out of 39 teams) for the 12-lead, 6-lead, 4-lead, 3-lead,
and 2-lead versions of the hidden test set, respectively. The
present model achieves higher generalization performance
over all versions of the hidden test set than the model sub-
mitted last year.

1. Introduction

Electrocardiogram (ECG) is an important tool for di-
agnosing cardiac abnormalities, and more than 300 mil-
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lion ECGs are obtained worldwide each year [/1]. Standard
ECGs, which are used to diagnose heart diseases, consist
of 12 leads. However, it is not always possible to obtain
all 12 leads due to the cost and limitations of measurement
devices. Recently, it has been demonstrated that a subset of
12 leads also contains sufficiently meaningful information
(2]

In last year, we developed a model to classify clinical
cardiac abnormalities from 12-lead ECG classification [3]].
Although our model showed a high challenge score on the
validation dataset, it showed a much lower score on the
hidden test dataset due to the lack of dataset-wise gener-
alization performance. The characteristics of ECG vary
from dataset to dataset for various reasons, i.e., hospital,
race, etc. It is important to design a model to have gen-
eralization performance on dataset unseen during training.
Therefore, it is necessary to check whether the proposed
model shows high generalization performance consistently
over various datasets.

In this paper, as part of the PhysioNet / Computing in
Cardiology Challenge 2021, we present a model developed
to classify cardiac abnormalities from 12 and reduced-lead
ECGs [4H6]. To get the present model having high gen-
eralization performance, we have attempted various tech-
niques and evaluated them using the leave-one-dataset-out
cross-validation for model selection. The present model
achieves 0.1 higher challenge score in average over all test
set versions than the model we submitted last year [3].

2. Methods

2.1. Data

Table [1| shows the statistics of the data provided by the
challenge with 26 scored SNOMED-CT labels [[13]] from
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Number of w/ Scored Average
Dataset recordings Labels Length (second)
Ningbol[7] 34,905 34,485 10
PTB-XL[38] 21,837 21,604 10
Chapman(9] 10,247 9,710 10
G12EC]5] 10,344 9,458 9
CPSC][10] 6,877 5,279 15
CPSC-Extra[10] 3,453 1,278 15
PTBJ11] 516 97 110
INCARTJ|12] 74 33 1,800

Table 1: Data statistics

eight datasets [6]. Among them, PTB and INCART data
are not used for training because of the long lengths and
relatively small number of samples. We also do not use
those without any positive scored labels for training. When
training the model, the ratio of train and validation datasets
is 9:1. In the leave-one-dataset-out cross-validation set-
ting, one of the six datasets is used as the test dataset, and
the remaining five datasets are used to train and validation
datasets.

We apply the following data pre-processing procedures.
First, we upsample or downsample ECGs into 500Hz.
Then, we apply a Finite Impulse Response bandpass filter
with a bandwidth of 3 to 45Hz. Normalization is applied
using the minimum and maximum values of each sample.
Finally, for any recording with a data length longer than
7,500, we use a randomly selected segment with a length
of 7,500 as input. If the length is shorter than 7,500, we use
zero-padding to make the length to be 7,500. For reduced-
lead model training, pre-defined leads are extracted from
the 12-lead sample [6].

2.2. Model Architecture

For the baseline model, we use our previous work [3]].
We use the WRN model architecture with 14 convolu-
tion/dense layers and widening factor 1 [[14]. The overall
structure of the model is shown in Figure[I] The additional
parts from the baseline are depicted in purple. The baseline
model consists of the basic residual block, but we use the
Squeeze and Excitation (SE) block to let the model learn
interdependency between channels [15]]. For the model to
consider the demographic information, we add additional
features to the dense layer of the output stem.

2.3. Training

First, we describe the experiment settings. Each model
is trained for 100 epochs using Pytorch with an NVIDIA
GeForce RTX 3080 [[16]. We use Adam optimizer, L2
weight decay of 0.0005, a dropout rate of 0.3, a batch
size of 128, and a learning rate of 0.001 through hyper-
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Figure 1: Model overview.

parameter search. In the next part, we explain the training
refinements to improve dataset-wise generalization.

Constant-weighted binary cross-entropy loss

In last year, we adopted confusion-weighted binary-
cross-entropy (CoW-BCE) [3]] loss designed to resemble
an evaluation metric called challenge score [6]]. Although
the model trained via CoW-BCE loss showed a high chal-
lenge score on the validation dataset, it showed a much
lower score on the hidden test dataset.

In this work, we use constant-weighted binary-cross en-
tropy inspired via asymmetric loss (ASL) [17]. To over-
come the inherent positive-negative imbalance in typical
multi-label classification problems, the ASL uses asym-
metric focusing and asymmetric probability shifting as fol-
lows:

—(1=p)+l if yis 1
AsL = 4 —(1=p) T log(p), ifyis] 0
—(pm)? " log (1 — p,,), otherwise

where p is the output probability of the model, p,, is the
shifted probability, and v+, v~ are positive and negative
focusing parameters, respectively.

For ease of implementation, we assume the positive fo-
cusing parameter v to be 0. We investigate the constant
value of the negative coefficient, which depends on the op-
timal negative focusing parameters v~ and shifted proba-
bility p,,,. Experimentally, we set the negative coefficient
to be 0.1, which is approximately the ratio of positive to
negative classes in the whole dataset.
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Figure 2: OneCycle Learning rate Scheduler.

Demographic features

For the model to consider demographic information, we
additionally use two kinds of features, i.e., age and gender.
The demographic feature vector consists of 5 values for
age, one-hot encoded sex, and two flags for missing values.
If there are age and gender values in the header, the values
are used directly, and missing flags are set to 0. Otherwise,
pre-defined default values are used, and the missing flags
are set to 1. The default age value is 60.37, and the de-
fault gender value (female/male ratio) is 0.471/0.519. As
shown in the purple path in Figure [I] the feature vector
is concatenated with the feature extracted by Deep Neural
Network(DNN) before the last dense layer.

Mixup

Mixup is one of the data augmentation techniques for
better generalization [18]]. It makes the decision boundary
smoother by regularizing the model. Assuming that two ar-
bitrary input signals in the batch are x1, x2, the features of
the samples are f1, fo, and the labels are /1, [5, the mixup
samples x’, f’, 1’ are created as follows.

2 = dry + (1= N)ag )
=2+ 1=Nf (3)
= A+ (1= V)i )

As used in the original mixup paper, mixing coefficient A
is sampled from a Beta(0.2,0.2) distribution. The model is
trained using the generated ', f’, and I’

Learning rate scheduler

We use the OneCycle learning rate scheduler [19]]. It
is known as a method for effective training by “super-
convergence” of residual blocks. At the beginning of train-
ing, the learning rate is set to a small value, and it is gradu-
ally increased and then decreased again after reaching the
pre-defined maximum value. The learning rate values per
epoch are shown in Figure 2] The maximum learning rate
value is set to 0.001. The model is trained for a total of 100
epochs using a cosine annealing strategy.

Leads Training Validation Test Ranking
12 0.654 0.610 0.550 2nd
6 0.680 0.580 0.580 Ist
4 0.691 0.600 0.580 Ist
3 0.689 0.590 0.570 2nd
2 0.673 0.590 0.570 2nd
Table 2: Challenge scores for our model using whole six
datasets.
3. Experiments results

The experiment results of the present model trained us-
ing the whole six datasets are shown in Table [2] We report
the training, validation, and test challenge score, and team
ranking for our proposed 12-lead, 6-lead, 4-lead, 3-lead,
and 2-lead models. The average validation challenge score
is 0.594, and the average test challenge score is 0.570. As
aresult of adding up the scores up to the test set, our model
records 2nd, 1st, 1st, 2nd, and 2nd place on 12-lead, 6-lead,
4-lead, 3-lead, and 2-lead, respectively.

In Table [3| we compare the performance of the base-
line and our 12-lead model. We show the results from
the leave-one-dataset-out cross-validation setting (3-9 col-
umn) and using the all six datasets (10 column). We report
the challenge scores when the dataset in the first row is
used as a test dataset. The last column shows the challenge
scores of 12-lead models trained and tested using six whole
datasets with 9:1 ratio. The challenge score from using six
whole datasets obtained by our model is 0.654, which is
0.08 lower than the baseline. Although the present model
obtains a lower challenge score when trained using the
whole six datasets, the dataset-wise generalization perfor-
mance becomes better compared to the baseline. The aver-
age dataset-wise challenge score of our proposed model is
0.483, which is 0.1 higher than the baseline. The usage of
a constant-weighted binary cross-entropy loss instead of
CoW-BCE loss function makes the most of the improve-
ment in the dataset-wise generalization performance. In
particular, the changed loss function improves the general-
ization performance for the PTB-XL dataset.

4. Concluding Remarks

In this paper, as a participating team in the PhysioNet
Challenge 2021, we proposed 12 and reduced-lead models
for automatically classifying cardiac abnormalities from
ECGs. We focused on building the classification model
to have a high dataset-wise generalization performance.
We used the SE-WRN-14-1 network with constant binary
cross-entropy loss, feature extraction, mixup, and OneCy-
cle learning rate scheduler by evaluating with the leave-
one-dataset-out cross-validation setting. The average score
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Test dataset Ningbo PTB-XL Chapman GI2EC CPSC CPSC-Extra Average | All
Model Baseline 0.545 -0.101 0.659 0.428  0.463 0.310 0.384 | 0.732
Our model  0.626 0.200 0.723 0.519  0.506 0.424 0.483 | 0.654

Table 3: Comparison of the performance between the baseline and our model in leave-one-dataset-out cross-validation
setting (3-9 columns) and using all six dataset (10 column))

of our proposed model was 0.1 higher than the baseline.
Again this year, although the ranking of the validation set
was not very good (15th), but the ranking on the hidden test
set was high (2nd) due to the increase in the dataset-wise
generalization performance.
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