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Abstract

As part of the PhysioNet/Computing in Cardiology
Challenge 2020, we developed a model for multilabel clas-
sification of 12-lead electrocardiogram (ECG) data ac-
cording to specified cardiac abnormalities. Our team,
LaussenLabs, developed a novel classifier pipeline with 6
core features (1) the addition of r-peak, p-wave, and t-wave
features that were input into the model along with the 12-
lead data, (2) data augmentation, (3) competition metric
hacking, (4) modified WaveNet architecture, (5) Sigmoid
threshold tuning, and (6) model stacking. Our approach
received a score of 0.63 using 6-fold cross-validation on
the full training data. Unfortunately, our model was un-
able to run on the test dataset due to time constraints,
therefore, our model’s final test score is undetermined.

1. Introduction

Cardiovascular disease is the leading cause of death
worldwide [1] and different cardiovascular diseases have
different causes and require different interventions, where
the electrocardiogram (ECG) is an essential tool for
screening and diagnosing cardiac electrical abnormali-
ties [2]. The PhysioNet/Computing in Cardiology Chal-
lenge 2020 focused on automated, open-source approaches
for classifying cardiac abnormalities from 12-lead ECGs
[3, 4]. Our entry for the Challenge applied a novel neu-
ral network architecture and training procedures, which are
described further in this paper.

2. Methods

The following is an overview of our methodology pre-
sented in eight sections (1) Preprocessing, (2) Feature Ex-

traction, (3) Model, (4) Augmentation, (5) Training, (6)
Class Activation Maps, (7) Tuning and (8) Inference.

2.1. Preprocessing

ECG waveform training data for this challenge was sam-
pled at 3 different rates (257, 500, and 1000 Hz). Thus,
we chose to upsample all ECG data to 1000 Hz using
the SciPy resample function. Waveform amplitudes were
scaled by the median r-peak amplitude on Lead-I if the
BioSPPy [5] algorithm was able to successfully pick r-
peaks. If the signal was too noisy for reliable r-peak ex-
traction, then each lead was standardized by subtracting its
median amplitude and then dividing by the standard devia-
tion of all 12 Leads combined. Our model’s input size was
19,000 samples (19 seconds at 1000Hz), which was chosen
as the optimal trade-off between training time and model
performance on cross-validation. Any samples with a du-
ration less than 19 seconds were zero-padded while sam-
ples with a duration greater than 19 seconds were clipped
after the first 19 seconds of recorded data.

2.2. Feature Engineering

We extracted three features, which were combined with
the ECG signals and input into the model. Features were
engineered to indicate the location of r-peaks, p-waves,
and t-waves as seen in Figure 1. For each lead, the po-
sition of r-peaks, p-waves and t-waves were computed and
are visualized as blue, red, and green dots respectively in
Figure 1. BioSPPy [5] was used to compute the r-peak lo-
cations and our algorithm was used to compute the p-wave
and t-waves locations. Our p-waves and t-waves detection
algorithm applies a 10 Hz low-pass filter to the R-R in-
tervals and then performs peak finding. R-peak, p-wave
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Figure 1. Example of ECG data and r-peak, p-wave and
t-wave features.

and t-wave times were combined using a kernel density
approach to generate a 1D normalized signal, which effec-
tively provides their likelihood locations. These features
were designed to help the model learn these important fea-
tures thus, helping improve convergence.

2.3. Model

The input to our model is an array containing 12 ECG
leads and three engineered features of 19 seconds in dura-
tion with a sampling rate of 1000 Hz. The array is config-
ured such that each signal is a separate channel, which re-
sulted in a 15-channel input. The stem consists of two lay-
ers each containing a 1D convolution, batchnorm, ReLU
activation, max-pooling, and dropout (see Figure 2). The
purpose of the stem layers was to downsample to the input
signal from 19,000 to 4,750 data points for GPU memory
considerations. The output from the stem is input into a
series of 8 residual layers (see Figure 2) that are modelled
after WaveNet’s [6] residual layers with the only difference
being that the convolutions are not causal. The 8 skip con-
nections are summed and fed into a series of output convo-
lution layers with the same architecture as the stem layers.
The final output is globally averaged in the time dimen-
sion and fed into a dense layer with 27 neurons followed
by a Sigmoid activation. The outpoint from the Sigmoid
function is then squared because the competition metric
is less sensitive to false-positive predictions. In contrast,

Figure 2. Overview of neural network architecture.
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it simulates the uplift prediction over recognizing all sig-
nals as normal sinus rhythm. Since Sigmoid outputs are
distributed between 0 and 1, the squaring operation forces
the model to give a higher penalty to false-negative predic-
tions rather than false-positive predictions. In addition to
this output, a decoder was positioned after the last residual
layer where two decoder layers upsampled the data to its
original input shape (batch-size, 19000, 15). The purpose
of this auxiliary output was to improve the feature extrac-
tion pipeline. Instead of learning features for classification
only, it also tries to represent morphological features of the
input ECG signal.

2.4. Augmentation

During our exploratory data analysis, we notice many
common noise artifacts in the data, such as baseline wan-
dering, and our initial plan was to filter them out during
pre-processing. However, when experimenting with the
model, we observed superior performance when the data
was left unfiltered. Therefore, we decided to augment the
data with synthetic noise. We developed four synthetic
noise sources that we randomly added to the data dur-
ing training (1) Gaussian noise, (2) high-frequency/low-
amplitude oscillations, (3) baseline wandering, and (4)
large-amplitude transient pulses. Two additional augmen-
tation strategies were employed. The first applied a ran-
dom multiplication factor to the waveform amplitude and
the second randomly perturbed the heart rate of the signal.
For example, if the true heart rate was 124 BPM, we would
add a random fluctuation changing the value to 132 BPM
and then resampling to 1000 Hz. This was only performed
for training samples where the label was not heart rate de-
pendent.

2.5. Training

For training, the data was split into 6 folds for
cross-validation using the open-source package iterative-
stratification, which is designed for multilabel stratifica-
tion. The model was trained for 100 epochs with early
stopping with and patience set to 10. The learning rate was
initially set to 1e-3 (batch size 128) and followed a decay
schedule ReduceLROnPlateau with patience equal to 1.
The loss function was the sum of the binary cross-entropy
of the classifier and mean squared error of the decoder and
was Optimized using the Adam optimizer [7].

2.6. Class Activation Maps

Our model architecture was designed such that Class
Activation Maps (CAMS) could be computed. We fol-
lowed the 1D CAM formulation of Goodfellow et al.
(2018) [8]. Goodfellow et al. (2018) [8] initially con-

Figure 3. Example of class activation maps.

ceived of CAMs applied to ECG data for use in explaining
arrhythmia predictions to clinicians at the bedside. How-
ever, for this competition, CAMs were used to help un-
derstand errors made by the model during training. Fig-
ure 3 presents three examples of CAMs where (a) and (b)
were predicted correctly and (c) was predicted incorrectly.
For Figure 3 (a), the model correctly predicts Premature
Ventricular Contraction (PVC) and Right Bundle Branch
Block (RBBB) and the CAM for PVC clearly shows eval-
uated activation at the time of the PVC event. For Figure
3 (b), the model correctly predicted First-degree Atrioven-
tricular Block (I-AVB) and the CAM shows elevated acti-
vation in the P-R region of each beat, which is consistent
with I-AVB’s main feature of elongated PR intervals. For
Figure 3 (c), the model incorrectly predicts PVC when the
true label is Atrial Fibrillation (AF). In this case, the CAM
shows four activation spikes coinciding with what look to
be PVC events. From here, we engaged our clinical team-
mates to determine if the training label was correct, for
which the CAMs proved useful.

2.7. Tuning

Output model predictions are managed by a post-
processing pipeline. After training was completed, we ap-
plied an algorithm for finding the optimal Sigmoid thresh-
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old by iterating over all thresholds between 0.05 and 0.95
with a 0.05 step, calculating the competition metric and se-
lect the best one. The optimal threshold was found for the
training split and then applied to the validation set. Find-
ing the threshold on the training set prevented leakage and
mitigated the influence of incorrect labels.

2.8. Inference

At inference time, the six models trained for each cross-
validation split were used for prediction. Hard predictions
from each model were combined by a majority vote. This
helped improve generalization of the final predictions and
mitigated the influence of incorrect labels. Considering
that each model was trained on different incorrectly la-
belled data, the resulting outputs are more independent and
therefore, provide a more robust group prediction.

3. Results

Our model’s cross-validation scores are presented in Ta-
ble 1 and show a minimum of 0.614, a maximum of 0.644,
and a mean of 0.63. Unfortunately, we were unable to
get out model to run on the test dataset by the competi-
tion deadline. As a result, we were given a test score of
-0.406, which is the score if all predictions are 0 for all test
samples.

Table 1. Summary of model cross-validation and test per-
formance.

Dataset Competition Metric
CV FOLD 1 0.631
CV FOLD 2 0.637
CV FOLD 3 0.644
CV FOLD 4 0.619
CV FOLD 5 0.614
CV FOLD 6 0.640
CV MEAN 0.630
CV STDEV 0.010

TEST -0.406
(Submission Error)

4. Discussion and Conclusions

Our CV score of 0.63 was the result of exhaustive model
architecture experimentation and hyper-parameter tuning.
Unfortunately, the competition came to a close, however,
our next strategy would have been relabelling. We devel-
oped a Python application for our clinical teammates to al-
low them to view ECG samples where the model made an
incorrect prediction and provide feedback and label cor-
rections. From inspecting many samples with our clini-
cal teammates, it was clear that a large number of training

samples appeared to be miss-labelled. See Figure 3 (c)
for a clear example. We also attempted to use gender and
age features by concatenating them to the output from the
global average pooling layer, however, this resulted in a
minor decline in performance and was therefore not im-
plemented.

In conclusion, we develop a novel model architecture
and training strategy for the 2020 Physionet/CinC Chal-
lenge which produced a CV score of 0.63. Unfortunately,
we were unable to get a successful test score by the com-
petition deadline. Our competition code is available at
github.com/Seb-Good/physionet-challe
nge-2020.
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